LIST OF POSTERS

Session 1 (odd #) – Tuesday July 8, 16:00-18:00

Session 2 (even #) – Thursday July 10, 16:00-18:00

<table>
<thead>
<tr>
<th>Poster #</th>
<th>Topic</th>
<th>Presenting Author</th>
<th>Poster Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Development</td>
<td>Chen, Jianghua</td>
<td>The molecular mechanism of leaf movement in Medicago truncatula</td>
</tr>
<tr>
<td>2</td>
<td>Development</td>
<td>Eleouet, M.</td>
<td>Genetic Analysis of Leaf Development in Pisum sativum</td>
</tr>
<tr>
<td>3</td>
<td>Development</td>
<td>Hecht, V</td>
<td>Functional analysis of FT genes in pea</td>
</tr>
<tr>
<td>4</td>
<td>Development</td>
<td>Javier Mendiola, JM.</td>
<td>A set of marker lines for protein localization in Medicago truncatula for community use</td>
</tr>
<tr>
<td>5</td>
<td>Development</td>
<td>Li, W.L.</td>
<td>GmGBP1, a homolog of human ski interacting protein in soybean, regulates flowering stem elongation and heat tolerance</td>
</tr>
<tr>
<td>6</td>
<td>Development</td>
<td>Nelson, M.N.</td>
<td>What does it take to make lupins flower? Molecular and ecophysiological approaches to understanding phenology in Lupinus angustifolius L.</td>
</tr>
<tr>
<td>7</td>
<td>Development</td>
<td>Yang, Tianquan</td>
<td>Floral asymmetry in the model legume Medicago truncatula</td>
</tr>
<tr>
<td>8</td>
<td>Evolution</td>
<td>Coyne, C.C.</td>
<td>Phylogeography and genetic diversity of the Pisum genus, with inference to pea domestication</td>
</tr>
<tr>
<td>9</td>
<td>Evolution</td>
<td>Javadi, F.</td>
<td>Genetic diversity in wild and domesticated Azuki beans</td>
</tr>
<tr>
<td>10</td>
<td>Evolution</td>
<td>Kang, Y.J.</td>
<td>Genome sequence of mungbean and insights into evolution within Vigna species</td>
</tr>
<tr>
<td>11</td>
<td>Evolution</td>
<td>Pauls, K.P.</td>
<td>Comparisons between Bean and Soybean Genomes Lead to Insights into Gene Function and Evolution in Both Species</td>
</tr>
<tr>
<td>12</td>
<td>Evolution</td>
<td>Steele, K. P.</td>
<td>Genome Size Estimation in Medicago (Fabaceae): Independent Loss and Gain?</td>
</tr>
<tr>
<td>13</td>
<td>Evolution</td>
<td>Susek, K.</td>
<td>Cyto-molecular tracking of lupin chromosome evolution</td>
</tr>
<tr>
<td>14</td>
<td>Evolution</td>
<td>Wong, M.M.L.</td>
<td>A Whole Genome Duplication potentially drove diversification in Fabaceae</td>
</tr>
<tr>
<td>15</td>
<td>Genomics and Genetics</td>
<td>ABDI KETEMA, D.</td>
<td>Mapping QTLs for Days to Flowering, Photoperiod Sensitivity and Ascochyta Blight Reaction in a Chickpea Recombinant Inbred Population</td>
</tr>
<tr>
<td>16</td>
<td>Genomics and Genetics</td>
<td>Agunbiade, TA</td>
<td>Development of Reference Transscriptomes for the Major Field Insect Pests of Cowpea: A Toolbox for Insect Pest Management Approaches in West Africa</td>
</tr>
<tr>
<td>Page</td>
<td>Genomics and Genetics</td>
<td>Author(s)</td>
<td>Title</td>
</tr>
<tr>
<td>------</td>
<td>-----------------------</td>
<td>-----------</td>
<td>-------</td>
</tr>
<tr>
<td>17</td>
<td>Ali, M.B.</td>
<td>Development and mapping of SNP markers associated with zt-1 and zt-2 genes controlling zero tannin in faba bean (Vicia faba L.)</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Araujo, S.S.</td>
<td>Unraveling grain filling mechanism in Phaseolus vulgaris L. under water deficit: transcriptomic and proteomic approaches</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Bhatnagar-Mathur, P.</td>
<td>Drought tolerant transgenic peanut moves closer to reality</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Buchwaldt, L.</td>
<td>Resistance in chickpea to Ascochyta rabiei is conferred by genes encoding pathogen recognition and other genes in basic defense pathways</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Burstin, J.</td>
<td>PeaMUST, a large multidisciplinary project dedicated to pea improvement</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Cannon, EKS</td>
<td>PeanutBase: The Genomic Data Portal for Arachis</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Dastmalchi, M</td>
<td>Soybean chalcone isomerase: evolutionary history of the fold as told by sequence, expression and localization of the gene family</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Deokar, A</td>
<td>QTL to Candidate Genes: Understanding Photoperiod Sensitivity and Flowering Time in Chickpea</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Diapari, Marwan</td>
<td>Synteny analysis of markers associated with iron and zinc concentration in pea and chickpea with Medicago truncatula</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Dickstein, R.</td>
<td>An improved genetic crossing method for Medicago truncatula</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>Guo, Y.</td>
<td>Developing a platform for allele mining in soybean (Glycine max) and its application to functional marker development and genotype identification</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>Gupta, P.</td>
<td>Genetic diversity at EST-SSR markers and its relationship to ODAP content under heat stress in grass pea (Lathyrus sativus L.)</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>Hamwieh, A</td>
<td>Mapping QTLs across environments for heat related traits in Chickpea (Cicer arietinum L.)</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>Ibrahim, Hossam M.</td>
<td>Effectiveness of Breeding Methods for Production of Superior Genotypes and Maintenance of Genetic Variance in Fabe Bean (Vicia faba, L.)</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>Igrejas, G.</td>
<td>Can proteomic markers be used to evaluate genetic diversity in Portuguese populations of sweet chestnut (Castanea sativa Mill.)?</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>Igrejas, G.</td>
<td>SDS-PAGE of storage proteins as a way to discover genetic diversity of garbanzo beans (Cicer arietinum L.)</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>Jain, P.</td>
<td>Differential Expression of Acetohydroxyacid Synthase Genes and Response to Imazamox Herbicide in Chickpea</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>Joshi, T</td>
<td>Soybean Knowledge Base (SoyKB): Bridging the gap between soybean translational genomics and breeding</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>Kamphuis, L.G.</td>
<td>The narrow-leaved lupin genome assembly, transcriptome sequencing of different tissue types and generation of gene-based molecular markers</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>Kaur, P</td>
<td>First Genome Draft of subterranean clover (Trifolium subterraneum L.)</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>Kaur, S</td>
<td>Legume genomics – perspectives, progress and challenges</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>Khadke, S.G.</td>
<td>Development of Superior Mutants in Moth Bean (Vigna aconitifolia (Jacq.) Marechal) Through Induced Mutation Breeding</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>Khazaei, H.</td>
<td>The Faba bean Genome Sequencing Consortium</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>Kim, M.Y.</td>
<td>Genome-wide analysis of UV-B induced mutations in soybean (Glycine max (L.) Merr.)</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>Kisha, T.J.</td>
<td>Genetic Diversity of the Phaseolus acutifolius A. Gray Collection of the USDA National Plant Germplasm System Using Targeted Region Amplified Polymorphism (TRAP) Markers Designed form Genes</td>
<td></td>
</tr>
<tr>
<td>Page</td>
<td>Journal</td>
<td>Authors</td>
<td>Title</td>
</tr>
<tr>
<td>------</td>
<td>---------</td>
<td>---------</td>
<td>-------</td>
</tr>
<tr>
<td>42</td>
<td>Genomics and Genetics</td>
<td>Lavaud, L.C.</td>
<td>Constructing near-isogenic lines by Marker-Assisted-Selection to validate QTL for resistance to Aphanomyces euteiches in pea</td>
</tr>
<tr>
<td>43</td>
<td>Genomics and Genetics</td>
<td>Lightfoot, D.A.</td>
<td>Two decades of QTL analysis among Forrest, Essex, Hartwig and Flyer RILs and NILs</td>
</tr>
<tr>
<td>44</td>
<td>Genomics and Genetics</td>
<td>Lightfoot, D.A.</td>
<td>Why is resistance to soybean cyst nematode so complicated compared to sudden death syndrome?</td>
</tr>
<tr>
<td>45</td>
<td>Genomics and Genetics</td>
<td>Madrid, E</td>
<td>Large-scale transcriptome analysis in faba bean (Vicia faba L.)</td>
</tr>
<tr>
<td>46</td>
<td>Genomics and Genetics</td>
<td>Madrid, E</td>
<td>Candidate gene expression analysis of the genes located in the QTLAR3 in chickpea related with Ascochyta blight resistance</td>
</tr>
<tr>
<td>47</td>
<td>Genomics and Genetics</td>
<td>Marsolais, F.</td>
<td>Genomic analysis of polymorphisms conferring storage protein deficiency in common bean</td>
</tr>
<tr>
<td>48</td>
<td>Genomics and Genetics</td>
<td>Mishra, N.</td>
<td>Exploiting potential of wild Cicer species for improving chickpea</td>
</tr>
<tr>
<td>49</td>
<td>Genomics and Genetics</td>
<td>Omar Idrissi, O.I</td>
<td>Assessment of genetic variation of lentil (Lens culinaris Medik) landraces from Morocco</td>
</tr>
<tr>
<td>50</td>
<td>Genomics and Genetics</td>
<td>O'Rourke, J.A.</td>
<td>Gene Expression Patterns in Soybean Fast Neutron Mutants</td>
</tr>
<tr>
<td>51</td>
<td>Genomics and Genetics</td>
<td>Perez de la Vega, M.</td>
<td>A genetic map of lentil based on retrotransposon derived genetic markers.</td>
</tr>
<tr>
<td>52</td>
<td>Genomics and Genetics</td>
<td>Perez de la Vega, M.</td>
<td>An annotated collection of EST sequences from lentil (Lens culinaris Medik.)</td>
</tr>
<tr>
<td>53</td>
<td>Genomics and Genetics</td>
<td>Porch, T.G.</td>
<td>Association mapping analysis of the response to Macrophomina phaseolina in the Andean Diversity Panel</td>
</tr>
<tr>
<td>54</td>
<td>Genomics and Genetics</td>
<td>Rajandran, V</td>
<td>Genetic control of early flowering in lentils</td>
</tr>
<tr>
<td>55</td>
<td>Genomics and Genetics</td>
<td>Ramsay, L.D.</td>
<td>Progress on the Lentil Draft Genome Assembly</td>
</tr>
<tr>
<td>56</td>
<td>Genomics and Genetics</td>
<td>Rana, J.C.</td>
<td>Developing trait specific sets of germplasm in selected grain legumes in India</td>
</tr>
<tr>
<td>57</td>
<td>Genomics and Genetics</td>
<td>Roorkiwal, M.</td>
<td>Prediction of breeding values using genome wide markers for yield related traits in chickpea</td>
</tr>
<tr>
<td>58</td>
<td>Genomics and Genetics</td>
<td>Saha, Shyamali</td>
<td>Wild Relatives of Lentil: Removing Obstacles to Increased Genetic Gain</td>
</tr>
<tr>
<td>59</td>
<td>Genomics and Genetics</td>
<td>Sameer kumar, C.V.</td>
<td>A unique hybrid parental line identification system using obcordate leaf shape marker in Pigeonpea</td>
</tr>
<tr>
<td>60</td>
<td>Genomics and Genetics</td>
<td>Sanderson, LA</td>
<td>KnowPulse: a breeder-focused web portal that integrates genetics and genomics of pulse crops with model genomes</td>
</tr>
<tr>
<td>61</td>
<td>Genomics and Genetics</td>
<td>Santalla, M.</td>
<td>Characterization of QTLs for flowering date in a mapping population of the legume species Phaseolus vulgaris</td>
</tr>
<tr>
<td>62</td>
<td>Genomics and Genetics</td>
<td>Saxena, R.K.</td>
<td>Fast forward genetic mapping provide candidate genes for resistance to fusarium wilt and sterility mosaic disease resistance in pigeonpea (Cajanus cajan L. Millsp.)</td>
</tr>
<tr>
<td>63</td>
<td>Genomics and Genetics</td>
<td>Schafleitner, R.</td>
<td>Next-Generation Genotyping of Mungbean (Vigna radiata)</td>
</tr>
<tr>
<td>64</td>
<td>Genomics and Genetics</td>
<td>Sen Gupta, D.</td>
<td>A validated source panel of SSR markers for effective discrimination of lentil species</td>
</tr>
<tr>
<td>65</td>
<td>Genomics and Genetics</td>
<td>Si, P.</td>
<td>Non-target-site mechanism of metribuzin tolerance in induced mutants of narrow-leaved lupin (Lupinus angustifolius L.)</td>
</tr>
<tr>
<td>66</td>
<td>Genomics and Genetics</td>
<td>Slater, SMH</td>
<td>An integrated breeding technology for accelerating generation advancement and trait introgression into dry bean (Phaseolus vulgaris).</td>
</tr>
<tr>
<td>67</td>
<td>Genomics and Genetics</td>
<td>Slater, SMH</td>
<td>Hardseededness in dry bean – effect of genotype, environment</td>
</tr>
<tr>
<td>Page</td>
<td>Section</td>
<td>Authors</td>
<td>Title</td>
</tr>
<tr>
<td>------</td>
<td>---------</td>
<td>---------</td>
<td>-------</td>
</tr>
<tr>
<td>68</td>
<td>Genetics</td>
<td>Smithger, J.A.</td>
<td>SSR AA122 is Linked to the Classical Morphological Mutation am2 in Pisum sativum</td>
</tr>
<tr>
<td>69</td>
<td>Genetics</td>
<td>Smykal, P.</td>
<td>Establishment of wild pea Pisum fulvum chromosome segment substitution lines in cultivated P. sativum genetic background, as a tool to study domestication and to broaden genetic diversity.</td>
</tr>
<tr>
<td>70</td>
<td>Genetics</td>
<td>Srinivasan, S</td>
<td>A major QTL identified for vernalization response in chickpea</td>
</tr>
<tr>
<td>71</td>
<td>Genetics</td>
<td>Sudheesh S</td>
<td>SNP marker discovery, linkage map construction and identification of QTLs for enhanced salinity tolerance in field pea (Pisum sativum L.)</td>
</tr>
<tr>
<td>72</td>
<td>Genetics</td>
<td>Sudheesh, S.</td>
<td>Transcriptome atlas of field pea (Pisum sativum L.)</td>
</tr>
<tr>
<td>73</td>
<td>Genetics</td>
<td>Thudi, M</td>
<td>CaTILL: A resource for novel alleles for chickpea (Cicer arietinum) improvement</td>
</tr>
<tr>
<td>74</td>
<td>Genetics</td>
<td>Thudi, M</td>
<td>Fine mapping of a "QTL-hotspot" for drought tolerance in chickpea (Cicer arietinum L.)</td>
</tr>
<tr>
<td>75</td>
<td>Genetics</td>
<td>Tikle, A.N.</td>
<td>Stability of male sterility and fertility restoration in pigeonpea (Cajanus cajan (L.) Millsp.) under different regimes of temperature and locations</td>
</tr>
<tr>
<td>76</td>
<td>Genetics</td>
<td>Toker, C.</td>
<td>Induction and inheritance for Resistance to Herbicide in Cicer reticulatum Ladiz.</td>
</tr>
<tr>
<td>77</td>
<td>Genetics</td>
<td>Trujillo, D.I.</td>
<td>Genomic characterization of the LEED..PEEDs, a gene family unique to Medicago species</td>
</tr>
<tr>
<td>78</td>
<td>Genetics</td>
<td>Varshney, R.K.</td>
<td>Identification and validation of heat stress responsive genes in chickpea (Cicer arietinum L.)</td>
</tr>
<tr>
<td>79</td>
<td>Genetics</td>
<td>Varshney, R.K.</td>
<td>Identification of internal housekeeping genes for studying gene expression in pigeonpea by quantitative real-time PCR</td>
</tr>
<tr>
<td>80</td>
<td>Genetics</td>
<td>Varshney, RK</td>
<td>Selection of appropriate genomic selection model in an unstructured germplasm set of peanut (Arachis hypogaea L.)</td>
</tr>
<tr>
<td>81</td>
<td>Genetics</td>
<td>Vaz Patto, M.C.</td>
<td>Take a walk on the bean side: The Portuguese genetic diversity</td>
</tr>
<tr>
<td>82</td>
<td>Genetics</td>
<td>Wen, J.</td>
<td>Generation and Application of Medicago truncatula Tnt1 Mutants</td>
</tr>
<tr>
<td>83</td>
<td>Genetics</td>
<td>Wolko, B.</td>
<td>Lupinus angustifolius gene copy number quantification</td>
</tr>
<tr>
<td>84</td>
<td>Genetics</td>
<td>YANG, SY</td>
<td>Faba bean genomic study and its future application</td>
</tr>
<tr>
<td>85</td>
<td>Genetics</td>
<td>Yuan, H. Y.</td>
<td>Developing a genomic in situ hybridization protocol for genomic studies of lentil</td>
</tr>
<tr>
<td>86</td>
<td>Genetics</td>
<td>Yuan, H. Y.</td>
<td>Pubescence, can it be used to differentiate L. tomentosus from L. orientalis?</td>
</tr>
<tr>
<td>87</td>
<td>Genetics</td>
<td>Zou, X.</td>
<td>Genome-wide SNP and InDel discovery and transcriptional profiling of CBB resistance in common bean</td>
</tr>
<tr>
<td>88</td>
<td>Nitrogen Fixation and Symbiosis</td>
<td>ARRIGHI, J.F.</td>
<td>Aeschynomene evenia, a model plant for studying the molecular genetics of the Nod-independent rhizobium-legume symbiosis</td>
</tr>
<tr>
<td>89</td>
<td>Nitrogen Fixation and Symbiosis</td>
<td>Gisiora, J. K.</td>
<td>Investigating the Development of M. truncatula Symbiosome Membrane Using ENOD16 and Vacuolar H+ATPase</td>
</tr>
<tr>
<td>90</td>
<td>Nitrogen Fixation and Symbiosis</td>
<td>Maalouf, F.</td>
<td>Rhizobium nodulation of an Ethyl methanesulfonate (EMS) mutagenized faba bean population</td>
</tr>
<tr>
<td>91</td>
<td>Nitrogen Fixation and Symbiosis</td>
<td>Molla, M.M</td>
<td>Response of chickpea varieties to Rhizobium inoculation under different agro-ecological zones of Ethiopia.</td>
</tr>
<tr>
<td>92</td>
<td>Nitrogen Fixation and Symbiosis</td>
<td>TROMAS, A</td>
<td>Lotus japonicus AMP1 and HAR1 act synergistically to regulate root architecture</td>
</tr>
<tr>
<td>93</td>
<td>Nitrogen Fixation and Symbiosis</td>
<td>Wang, J.</td>
<td>Towards dissecting the genetic basis of peanut nodulation</td>
</tr>
<tr>
<td>Page</td>
<td>Title</td>
<td>Author(s)</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td>-------------------------------</td>
<td></td>
</tr>
<tr>
<td>94</td>
<td>Nitrogen Fixation and Symbiosis</td>
<td>Wijesinghe, M.A.K.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Commercial Arbuscular Mycorrhizal (AM) Inoculants Change the Diversity of AM Communities Associated with Roots and Rhizosphere of Field Pea</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95</td>
<td>Nitrogen Fixation and Symbiosis</td>
<td>Woo, S.L.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Effects of microbe-legume interactions on agricultural production</td>
<td></td>
<td></td>
</tr>
<tr>
<td>96</td>
<td>Seeds and Nutrition</td>
<td>Adhikari, E.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Genetic and Environmental Effect on Mineral Nutrient Accumulation in Pea</td>
<td></td>
<td></td>
</tr>
<tr>
<td>97</td>
<td>Seeds and Nutrition</td>
<td>Adhikari, E.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Compositional Mineral Nutrient Variation in Lentil</td>
<td></td>
<td></td>
</tr>
<tr>
<td>98</td>
<td>Seeds and Nutrition</td>
<td>Bangar, P.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Increasing iron concentration and bioavailability in field pea</td>
<td></td>
<td></td>
</tr>
<tr>
<td>99</td>
<td>Seeds and Nutrition</td>
<td>Boux, G.B.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Effects of Pre-milling Treatments of Yellow Peas on Spaghetti Quality</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>Seeds and Nutrition</td>
<td>Cichy, K.A.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Genome Wide Association Mapping of Cooking Time in Andean Dry Beans</td>
<td></td>
<td></td>
</tr>
<tr>
<td>101</td>
<td>Seeds and Nutrition</td>
<td>Dhaubhadel, S.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Seed coat RNAseq analysis of two Pinto bean cultivars that differ in post-harvest seed coat darkening</td>
<td></td>
<td></td>
</tr>
<tr>
<td>102</td>
<td>Seeds and Nutrition</td>
<td>Diederichsen, A.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Seed characteristics in cultivated Cicer arietinum and wild Cicer species preserved by Plant Gene Resources of Canada</td>
<td></td>
<td></td>
</tr>
<tr>
<td>103</td>
<td>Seeds and Nutrition</td>
<td>Emmrich, P.M.F.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lifting the curse of the grass pea</td>
<td></td>
<td></td>
</tr>
<tr>
<td>104</td>
<td>Seeds and Nutrition</td>
<td>GAAD, D.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Morphological and Biometrical characterization of seeds of some Algerians lentil accessions: Quantitative and Qualitative characters.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>105</td>
<td>Seeds and Nutrition</td>
<td>Gaikwad, N. B.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trypsin inhibitor, Polyphenol and Lectin content in Soybean (Glycine max (L.) Merrill).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>106</td>
<td>Seeds and Nutrition</td>
<td>Grusak, M. A.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Plant genotype, location, and their interaction effects on the concentrations of selected minerals in seed of kabuli chickpea breeding lines and cultivars examined in the US Pacific Northwest.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>107</td>
<td>Seeds and Nutrition</td>
<td>Hu, J.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>L-DOPA (L-3,4-dihydroxy phenylalanine) concentration variation in the leaf and flower tissues of six faba bean lines</td>
<td></td>
<td></td>
</tr>
<tr>
<td>108</td>
<td>Seeds and Nutrition</td>
<td>Joshi, J.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Analysis of candidate enzymes for the biosynthesis of S-methylcysteine in seed of common bean (Phaseolus vulgaris)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>109</td>
<td>Seeds and Nutrition</td>
<td>Jaillais, B.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Phenotyping of internal structure of seeds of legume crops by imaging and chemometrics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>110</td>
<td>Seeds and Nutrition</td>
<td>Kang, B.K.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The Effect of sprouting temperatures on Growth characteristics, Protein content and Antioxidant activity of Pea(Pisum sativum L.) sprouts</td>
<td></td>
<td></td>
</tr>
<tr>
<td>111</td>
<td>Seeds and Nutrition</td>
<td>Kim, S.U.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Variation of lignan content for sesaean seed across origin and growing environments</td>
<td></td>
<td></td>
</tr>
<tr>
<td>112</td>
<td>Seeds and Nutrition</td>
<td>Kundu, Shudhangshu</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Optimizing zinc analysis of seeds of wild lentil species</td>
<td></td>
<td></td>
</tr>
<tr>
<td>113</td>
<td>Seeds and Nutrition</td>
<td>Liu, X.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Iron bioavailability in low phytate pea</td>
<td></td>
<td></td>
</tr>
<tr>
<td>114</td>
<td>Seeds and Nutrition</td>
<td>Loader T.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Effect of Yellow Pea Flour Protein Content on End-Quality of Spaghetti</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115</td>
<td>Seeds and Nutrition</td>
<td>Lu, JL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Starch morphology and compositions correlate with protein contents in field peas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>116</td>
<td>Seeds and Nutrition</td>
<td>Mahla Mirali, M.M.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Polyphenols in whole seeds and seed coats of lentil market classes.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>117</td>
<td>Seeds and Nutrition</td>
<td>Nayyar, H</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Heat stress impairs reproductive function, sucrose metabolism and severely reduces seed yield in Chickpea and Lentil genotypes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>118</td>
<td>Seeds and Nutrition</td>
<td>Pastor-Corrales, M.A.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Establishment of the Andean Diversity Panel and its implementation in screening for key dry edible bean production: constraints and nutrition traits for Sub-Saharan Africa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>119</td>
<td>Seeds and Nutrition</td>
<td>Singh, Renu</td>
<td></td>
</tr>
<tr>
<td></td>
<td>To exploit genotype x environment interactions (G x E) for developing mung bean with increased micronutrients</td>
<td></td>
<td></td>
</tr>
<tr>
<td>120</td>
<td>Seeds and Nutrition</td>
<td>Smykal, P.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Structural, genetic and chemical analysis of the seed coat role in establishment of dormancy of the pea seed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>121</td>
<td>Seeds and Nutrition</td>
<td>Thompson, R.D.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LEGumes for the Agriculture of TOMorrow (LEGATO project)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Page</td>
<td>Section</td>
<td>Author</td>
<td>Title</td>
</tr>
<tr>
<td>------</td>
<td>---------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>122</td>
<td>Seeds and Nutrition</td>
<td>Timmerman-Vaughan, G.M.</td>
<td>Candidate gene based association mapping of allelic polymorphisms associated with variation in seed starch chain length distribution</td>
</tr>
<tr>
<td>123</td>
<td>Seeds and Nutrition</td>
<td>Vasconcelos, M.W.</td>
<td>Development and characterization of a white lupin-enriched symbiotic yogurt</td>
</tr>
<tr>
<td>124</td>
<td>Seeds and Nutrition</td>
<td>Vasconcelos, M.W.</td>
<td>Potential of white lupins (Lupinus albus L.) to promote the growth of Bifidobacterium and Lactobacillus strains</td>
</tr>
<tr>
<td>125</td>
<td>Seeds and Nutrition</td>
<td>Wang, N.</td>
<td>Effect of variety and crude protein content on quality of gluten-free pasta prepared from lentil flour by high temperature extrusion</td>
</tr>
<tr>
<td>126</td>
<td>Seeds and Nutrition</td>
<td>Warkentin, T.D.</td>
<td>Towards biofortification of pea</td>
</tr>
<tr>
<td>127</td>
<td>Seeds and Nutrition</td>
<td>Wiesinger, J.A.</td>
<td>The Nutritive Value of Fast Cooking Dry Beans (Phaseolus vulgaris L)</td>
</tr>
<tr>
<td>128</td>
<td>Seeds and Nutrition</td>
<td>Yang, A.</td>
<td>Sensory Attributes of Soymilk and Tofu from Soybean Varieties Lacking Lipoxygenases</td>
</tr>
<tr>
<td>129</td>
<td>Abiotic Stress</td>
<td>Abbad Andaloussi, F.</td>
<td>Promote proven technologies for wheat – legume rotation systems under changing climate in Morocco</td>
</tr>
<tr>
<td>130</td>
<td>Abiotic Stress</td>
<td>Abd El-Rahman, R.</td>
<td>Identification of genetic variability for tolerance to metribuzin in faba bean</td>
</tr>
<tr>
<td>131</td>
<td>Abiotic Stress</td>
<td>Bueckert, R.A.</td>
<td>Controlled heat stress on pod and seed components in pea – ovule and pollination failure</td>
</tr>
<tr>
<td>132</td>
<td>Abiotic Stress</td>
<td>Coyne, C.J.</td>
<td>Screening chickpea for cold tolerance under controlled conditions</td>
</tr>
<tr>
<td>133</td>
<td>Abiotic Stress</td>
<td>Fevereiro, P.</td>
<td>Physiological responses toward water deficit of a M. truncatula homozigous transgenic line expressing the oat Adc gene</td>
</tr>
<tr>
<td>134</td>
<td>Abiotic Stress</td>
<td>Ghanem, M.E.</td>
<td>Assessment of water-saving traits in terminal drought adaptation of contrasting lentil genotypes</td>
</tr>
<tr>
<td>135</td>
<td>Abiotic Stress</td>
<td>H. Mobini, S.</td>
<td>Shortening generation time in faba bean (Vicia faba) by application of cytokinin and cold stress</td>
</tr>
<tr>
<td>136</td>
<td>Abiotic Stress</td>
<td>He Yu Hua, H.Y.H</td>
<td>Early maturity innovation studying on Faba bean</td>
</tr>
<tr>
<td>137</td>
<td>Abiotic Stress</td>
<td>Huang, S.</td>
<td>Characterizing the cross of CDC Sage and CDC Centennial field pea for heat resistance through flowering duration</td>
</tr>
<tr>
<td>138</td>
<td>Abiotic Stress</td>
<td>Jiang, Y</td>
<td>Heat stress on pollen development and seed-set in pea</td>
</tr>
<tr>
<td>139</td>
<td>Abiotic Stress</td>
<td>Jitendra, K.</td>
<td>Phenotyping for heat tolerance under field conditions in lentil</td>
</tr>
<tr>
<td>140</td>
<td>Abiotic Stress</td>
<td>Jogloy, S.</td>
<td>Nutrient uptakes and their contributions to yield in peanut genotypes with different levels of terminal drought resistance</td>
</tr>
<tr>
<td>141</td>
<td>Abiotic Stress</td>
<td>Kaur, Jagmeet</td>
<td>Identification of genetic variability for water logging and salinity tolerance in pigeonpea</td>
</tr>
<tr>
<td>142</td>
<td>Abiotic Stress</td>
<td>Maalouf, F.</td>
<td>Development of photoperiod insensitive faba bean breeding lines with tolerance to heat stress</td>
</tr>
<tr>
<td>143</td>
<td>Abiotic Stress</td>
<td>Maharjan, K.L.</td>
<td>Farmers' Decision in Land Allocation for Spring Season Crops: A Case Study in the Tarai Region of Nepal</td>
</tr>
<tr>
<td>144</td>
<td>Abiotic Stress</td>
<td>Meier, K.</td>
<td>Investigating the genetics of improved metribuzin herbicide tolerance in lentil</td>
</tr>
<tr>
<td>145</td>
<td>Abiotic Stress</td>
<td>Nath, Rajib</td>
<td>Comparative study on seedling performance due to imposed drought in lentil</td>
</tr>
<tr>
<td>146</td>
<td>Abiotic Stress</td>
<td>Omar Idrissi, O.I</td>
<td>Genetic variation of root and shoot traits at early stage in a lentil (Lens culinaris Medik) recombinant inbred lines population under drought: towards QTL mapping</td>
</tr>
<tr>
<td>147</td>
<td>Abiotic Stress</td>
<td>Rachaputi, R.C.N.</td>
<td>Genotype and environment interaction for resource use efficiency of chickpea (Cicer arietinum L) grown under water limited environments in subtropical Australia</td>
</tr>
<tr>
<td>148</td>
<td>Abiotic Stress</td>
<td>Singh, Sarveet</td>
<td>Identification of genetic variability for tolerance to Imazethapyr and Metribuzin in lentil (Lens culinaris)</td>
</tr>
<tr>
<td>149</td>
<td>Abiotic Stress</td>
<td>Singh, Sarveet</td>
<td>Identification of sources of post-emergence herbicide tolerance in chickpea and lentil</td>
</tr>
<tr>
<td>Page</td>
<td>Topic</td>
<td>Author(s)</td>
<td>Title</td>
</tr>
<tr>
<td>------</td>
<td>---------------</td>
<td>----------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>150</td>
<td>Abiotic Stress</td>
<td>Souter, J.R.</td>
<td>Ureide Accumulation and Abiotic Stress Resistance in a Population of</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Common Bean, Tepary Bean, and Interspecific Hybrids</td>
</tr>
<tr>
<td>151</td>
<td>Abiotic Stress</td>
<td>Vasconcelos, M.W.</td>
<td>Iron partitioning at an early growth stage impacts iron deficiency</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>responses in soybean plants (Glycine max L.)</td>
</tr>
<tr>
<td>152</td>
<td>Abiotic Stress</td>
<td>Vasconcelos, M.W.</td>
<td>Evaluation of new iron (III)-chelates on mineral nutrition of soybean</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(Glycine max L.)</td>
</tr>
<tr>
<td>153</td>
<td>Abiotic Stress</td>
<td>von Wettberg, EJ</td>
<td>Microenvironmental variation in natural habitats of wild chickpea</td>
</tr>
<tr>
<td>154</td>
<td>Abiotic Stress</td>
<td>Yadava, H.S.</td>
<td>Genetic enhancement for biotic and abiotic stress resistance in</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>chickpea: Achievements and perspectives in Madhya Pradesh, India</td>
</tr>
<tr>
<td>155</td>
<td>Abiotic Stress</td>
<td>Yoon, M.Y.</td>
<td>Whole transcriptome analysis of soybean in response to UV-B</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>irradiation using RNA-seq.</td>
</tr>
<tr>
<td>156</td>
<td>Abiotic Stress</td>
<td>Youssef, C.</td>
<td>Cell elongation instead cell number becomes the predominant factor</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>influencing genotypic differences in Medicago truncatula hypocotyl</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>length under abiotic stress</td>
</tr>
<tr>
<td>157</td>
<td>Abiotic Stress</td>
<td>Yuliasti, YL</td>
<td>Response Of Mungbean Mutant Lines To Drought Stress And Genetic</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Relationships Using SSR Markers</td>
</tr>
<tr>
<td>158</td>
<td>Biotic Stress</td>
<td>Adhikari, K.N.</td>
<td>Breeding and genetic studies of rust (Uromyces viciae-fabae)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>resistance in faba bean (Vicia faba L.) in Australia</td>
</tr>
<tr>
<td>159</td>
<td>Biotic Stress</td>
<td>Armstrong-Cho, C.</td>
<td>The root of the problem: Aphanomyces and Fusarium in</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Saskatchewan pea and lentil fields.</td>
</tr>
<tr>
<td>160</td>
<td>Biotic Stress</td>
<td>Arwin, AW</td>
<td>BREEDING SOYBEAN SUPER EARLY MATURITY USING INDUCE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>M U T A T I O N TECHNIQUE FOR HIGH YIELD, RESISTANCE TO LEAF</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>RUST and SPOT DISEASE FOR ANTICIPATION CLIMATE CHANGE</td>
</tr>
<tr>
<td>161</td>
<td>Biotic Stress</td>
<td>Bazghaleh, N.</td>
<td>Effects of H2 oxidizing bacteria on plant growth and inhibition of</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>fungal pathogens</td>
</tr>
<tr>
<td>162</td>
<td>Biotic Stress</td>
<td>Caudillo Ruiz, K. B.</td>
<td>Seed yield quantity, quality and seed infection caused by Stemphylium</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>blight in lentil.</td>
</tr>
<tr>
<td>163</td>
<td>Biotic Stress</td>
<td>Chatterton, S.</td>
<td>Fusarium species composition and root rot incidence in Alberta pea</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>fields in 2013</td>
</tr>
<tr>
<td>164</td>
<td>Biotic Stress</td>
<td>Chatterton, S.</td>
<td>Pathogen populations associated with root rot of field pea in western</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Canada</td>
</tr>
<tr>
<td>165</td>
<td>Biotic Stress</td>
<td>Conner, R.L.</td>
<td>Reactions of dry bean cultivars from western Canada to root rot.</td>
</tr>
<tr>
<td>166</td>
<td>Biotic Stress</td>
<td>Durkin, J.M.H.</td>
<td>A change in the Colletotrichumtruncatum population signals a need for</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>new resistance in lentil</td>
</tr>
<tr>
<td>167</td>
<td>Biotic Stress</td>
<td>Hassan, F.</td>
<td>Development of Insect and Fungi Resistant Transgenic Pea (Pisum</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>sativum L.)</td>
</tr>
<tr>
<td>168</td>
<td>Biotic Stress</td>
<td>Henriquez, M.A.</td>
<td>Fusarium species from soybean in Manitoba</td>
</tr>
<tr>
<td>169</td>
<td>Biotic Stress</td>
<td>Hou, A.</td>
<td>Combining resistance to common bacterial blight, anthracnose and</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>bean common mosaic virus in drybean</td>
</tr>
<tr>
<td>170</td>
<td>Biotic Stress</td>
<td>Jendoubi, W.</td>
<td>Development of chickpea near-isogenic lines for Fusarium wilt race 0</td>
</tr>
<tr>
<td>171</td>
<td>Biotic Stress</td>
<td>Jha, A.B.</td>
<td>Identification of quantitative trait loci for mycosphaerella blight</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>resistance in pea using an interspecific cross population</td>
</tr>
<tr>
<td>172</td>
<td>Biotic Stress</td>
<td>Jimenez-Lopez, J.C.</td>
<td>Lupin (Lupinus angustifolius L.) beta-conglutins as new bioactive</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>seed proteins with fungal growth inhibitory activity</td>
</tr>
<tr>
<td>173</td>
<td>Biotic Stress</td>
<td>Jorge A. Acosta-Gallegos, J.A.A.G.</td>
<td>Pathogenic races of Fusarium oxysporum f. sp. ciceris attacking</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>chickpeas at the Bajo region in Central Mexico</td>
</tr>
<tr>
<td>174</td>
<td>Biotic Stress</td>
<td>Jorge A. Acosta-Gallegos, J.A.A.G.</td>
<td>Resistance to Ascochyta rabiei is needed to expand the window frame</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>for chickpea sowing in Central Mexico</td>
</tr>
<tr>
<td>175</td>
<td>Biotic Stress</td>
<td>Kahlon, J. G.</td>
<td>Efficacy of transgenic disease resistant peas against Fusarium root</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>rot (F. solani and F. avenaceum) and Mycosphaerella blight (M. pinodes)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>in field.</td>
</tr>
<tr>
<td>176</td>
<td>Biotic Stress</td>
<td>Kumari, S.G.</td>
<td>Screening and selection of faba bean (Vicia faba L.) germplasm for</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>resistance to Faba bean necrotic yellows virus</td>
</tr>
<tr>
<td>Page</td>
<td>Biotic Stress</td>
<td>Author(s)</td>
<td>Title</td>
</tr>
<tr>
<td>------</td>
<td>--------------</td>
<td>-----------</td>
<td>-------</td>
</tr>
<tr>
<td>177</td>
<td>Biotic Stress</td>
<td>Le May, C.</td>
<td>Role of legume host species successions on Aphanomyces euteiches population structure</td>
</tr>
<tr>
<td>178</td>
<td>Biotic Stress</td>
<td>McLaren, D.L.</td>
<td>Fusarium species isolated from dry bean and field pea in Manitoba: Identification, pathogenicity and prognosis.</td>
</tr>
<tr>
<td>179</td>
<td>Biotic Stress</td>
<td>Miklas, P.N.</td>
<td>Characterizing quantitative resistance to halo bacterial blight in common bean population Rojo/CAL 143</td>
</tr>
<tr>
<td>180</td>
<td>Biotic Stress</td>
<td>Nyandoro, R.</td>
<td>Evaluation of soybean variety resistance to fusarium in the management of root rot of soybean in southern Alberta, Canada.</td>
</tr>
<tr>
<td>181</td>
<td>Biotic Stress</td>
<td>Ortega, P.F.</td>
<td>Blanoro: a new kabuli chickpea cultivar resistant to Fusarium oxysporum f. sp. ciceris</td>
</tr>
<tr>
<td>182</td>
<td>Biotic Stress</td>
<td>Pasche, J.S.</td>
<td>Comparison of Fusarium solani and F. avenaceum Inoculation Methods in Dry Pea</td>
</tr>
<tr>
<td>183</td>
<td>Biotic Stress</td>
<td>Podder, R.</td>
<td>Transfer of Stemphylium Blight Resistance from Lens ervoides to the Cultivated Lentil</td>
</tr>
<tr>
<td>184</td>
<td>Biotic Stress</td>
<td>Powell, T.K.</td>
<td>Bacterial auxin production facilitates resource conversion and carbon acquisition by the phyllosphere epiphyte Pantoea agglomerans on Phaseolus vulgaris leaves.</td>
</tr>
<tr>
<td>185</td>
<td>Biotic Stress</td>
<td>Rodda, M.S.</td>
<td>Establishment of screening methods and identification of resistant sources for stemphylium blight in lentil</td>
</tr>
<tr>
<td>186</td>
<td>Biotic Stress</td>
<td>Rodda, M.S.</td>
<td>Resistance to botrytis grey mould in Australian lentil breeding germplasm</td>
</tr>
<tr>
<td>187</td>
<td>Biotic Stress</td>
<td>Rubiales, D.</td>
<td>Legume breeding for broomrape resistance</td>
</tr>
<tr>
<td>188</td>
<td>Biotic Stress</td>
<td>Saraf, M</td>
<td>SUPPRESSION OF CHARCOAL ROT DISEASE BY TRICHERODERMA spp IN GLYCINE MAX</td>
</tr>
<tr>
<td>189</td>
<td>Biotic Stress</td>
<td>Saraf, M</td>
<td>Multifaceted beneficial microbes in rhizosphere to combat phytopathogens in Cicer arietinum.</td>
</tr>
<tr>
<td>190</td>
<td>Biotic Stress</td>
<td>Simons, K.J.</td>
<td>Seed to Seedling Transmission of Colletotrichum lindemuthianum Under Greenhouse Conditions</td>
</tr>
<tr>
<td>191</td>
<td>Biotic Stress</td>
<td>Sivachandra Kumar, NT</td>
<td>Seed-to-seedling transmission of Ascochyta pisi in field pea</td>
</tr>
<tr>
<td>192</td>
<td>Biotic Stress</td>
<td>Tenuta, M.</td>
<td>Results of the Manitoba soybean cyst nematode Survey</td>
</tr>
<tr>
<td>193</td>
<td>Biotic Stress</td>
<td>Tenuta, M.</td>
<td>The stem nematode (Ditylenchus weischeri) on grain pea and creeping thistle in the Canadian Prairie Provinces</td>
</tr>
<tr>
<td>194</td>
<td>Biotic Stress</td>
<td>Thompson, J.P.</td>
<td>Potential of wild chickpea species for improving the resistance of chickpea to root-lesion nematodes</td>
</tr>
<tr>
<td>195</td>
<td>Biotic Stress</td>
<td>Vaz Patto, M.C.</td>
<td>Chickling pea (Lathyrus cicera L.) resistance to rust and powdery mildew under QTLs scrutiny</td>
</tr>
<tr>
<td>196</td>
<td>Biotic Stress</td>
<td>Vijayan, P.</td>
<td>Evaluating secondary effects of strobilurin fungicides on cool season pulse crops in Canada.</td>
</tr>
<tr>
<td>197</td>
<td>Biotic Stress</td>
<td>Warale, R. R.</td>
<td>Phylogeny and pathogenicity of Colletotrichum / Glomerella species associated with anthracnose on leguminous hosts</td>
</tr>
<tr>
<td>198</td>
<td>Biotic Stress</td>
<td>Weeden, N.F.</td>
<td>A genetic analysis of the tolerance to Fusarium root rot in pea land races of the ‘Afghanistan’ type</td>
</tr>
<tr>
<td>199</td>
<td>Biotic Stress</td>
<td>Yang, Chao, Y.C.</td>
<td>Hydrogen oxidizing bacteria identified from Lentil field show the effects on plant growth</td>
</tr>
<tr>
<td>200</td>
<td>Biotic Stress</td>
<td>Zhang X</td>
<td>Evaluating new biological and chemical controls for soybean cyst nematode in dry bean</td>
</tr>
<tr>
<td>201</td>
<td>Biotic Stress</td>
<td>Zhou, Q.X.</td>
<td>Molecular identification of Fusarium species from soybean in Alberta</td>
</tr>
<tr>
<td>202</td>
<td>Crop management</td>
<td>Ahmed, S.</td>
<td>Effects of supplementary irrigation on Fusarium wilt epidemics and yield of lentil in northern Syria</td>
</tr>
<tr>
<td>203</td>
<td>Crop management</td>
<td>Ali, Omar</td>
<td>Advances of Lentil Research and Development in Bangladesh</td>
</tr>
<tr>
<td>204</td>
<td>Crop management</td>
<td>Antanasovic, S</td>
<td>Economically important characteristics of a wild population of Pisum sativum subsp. elatius from Pčinja in southeast Serbia</td>
</tr>
<tr>
<td>Page</td>
<td>Section</td>
<td>Author</td>
<td>Title</td>
</tr>
<tr>
<td>------</td>
<td>---------</td>
<td>--------</td>
<td>-------</td>
</tr>
<tr>
<td>205</td>
<td>Crop management</td>
<td>Bandara, M.S.</td>
<td>Impact of the plant growth regulators Prohexadione Calcium, Chloromequat Chloride and Tranexapac Ethyl on growth, maturation and seed yield of the Kabuli-type chickpea cultivars CDC Frontier and CDC Orion in southern Alberta</td>
</tr>
<tr>
<td>206</td>
<td>Crop management</td>
<td>Bandara, M.S.</td>
<td>Major phenological and physiological traits to be considered in developing soybean genotypes for southern Alberta growing conditions</td>
</tr>
<tr>
<td>207</td>
<td>Crop management</td>
<td>Beshir, H.M.</td>
<td>Improving snap bean production under low input production systems</td>
</tr>
<tr>
<td>208</td>
<td>Crop management</td>
<td>Chaturvedi, S.K.</td>
<td>Tailoring chickpea cultivars for amenability to mechanical harvesting and increasing farm income</td>
</tr>
<tr>
<td>209</td>
<td>Crop management</td>
<td>Daoui, K.</td>
<td>Effect of phosphate-solubilizing rhizobia on the growth and phosphorus uptake by Vicia faba</td>
</tr>
<tr>
<td>211</td>
<td>Crop management</td>
<td>FATEMI, Z.</td>
<td>Collection, characterization and evaluation of Moroccan faba bean landraces</td>
</tr>
<tr>
<td>212</td>
<td>Crop management</td>
<td>Fikre, Asnake</td>
<td>Unraveling breeding traits in Ethiopian legume research hastened intensification and economic gains</td>
</tr>
<tr>
<td>213</td>
<td>Crop management</td>
<td>Ganga Rao, N.V.P.R</td>
<td>Chickpea breeding and development efforts in Eastern and Southern Africa: achievements and opportunities</td>
</tr>
<tr>
<td>214</td>
<td>Crop management</td>
<td>Ganga Rao, N.V.P.R</td>
<td>Pigeonpea breeding in Eastern and Southern Africa: achievements and future prospects</td>
</tr>
<tr>
<td>215</td>
<td>Crop management</td>
<td>Gerbu, L.D.</td>
<td>Agronomic approach to mitigate zinc deficiency in the Southern Region of Ethiopia</td>
</tr>
<tr>
<td>216</td>
<td>Crop management</td>
<td>Gharti, D.B.</td>
<td>Grain Legumes Research in Nepal: Present Scenario and Future Prospects</td>
</tr>
<tr>
<td>217</td>
<td>Crop management</td>
<td>Gondwe, T.G</td>
<td>Cowpea production in Malawi</td>
</tr>
<tr>
<td>218</td>
<td>Crop management</td>
<td>Goyal, A.</td>
<td>Chickpea Improvement Program at ICARDA</td>
</tr>
<tr>
<td>219</td>
<td>Crop management</td>
<td>Kennedy, P.</td>
<td>Breeding field pea for Australian conditions</td>
</tr>
<tr>
<td>220</td>
<td>Crop management</td>
<td>Khalifa, G.E.</td>
<td>Two new faba bean cultivars for the River Nile and Northern states - Sudan</td>
</tr>
<tr>
<td>221</td>
<td>Crop management</td>
<td>KHANAL, N.P.</td>
<td>Impact of Climatic and Socio-economic Factors on Lentil Crop Yield in the Tarai Region of Nepal</td>
</tr>
<tr>
<td>222</td>
<td>Crop management</td>
<td>Krstic, D</td>
<td>Pigment content of alfalfa established with pea-oat mixture</td>
</tr>
<tr>
<td>223</td>
<td>Crop management</td>
<td>Larbi, A.</td>
<td>Genotype, Rhizobium inoculum and NPK fertilizer effects on soybean grain yield in northern Ghana</td>
</tr>
<tr>
<td>224</td>
<td>Crop management</td>
<td>Mansur, C.P.</td>
<td>Evaluation of machine harvestable desi chickpea genotypes for high density planting under rainfed ecosystem</td>
</tr>
<tr>
<td>225</td>
<td>Crop management</td>
<td>MARROU, H.</td>
<td>Crop simulation of grain legumes under Mediterranean conditions using SSM-I-Legume: take home lessons for breeding and crop management</td>
</tr>
<tr>
<td>226</td>
<td>Crop management</td>
<td>McMurray, L.S.</td>
<td>High levels of metribuzin tolerance developed in lentil</td>
</tr>
<tr>
<td>227</td>
<td>Crop management</td>
<td>Monyo, E.S</td>
<td>Achievements, Challenges and Lessons in Enhancing Productivity and Production of Major Tropical Legumes for sub-Saharan Africa and South Asia</td>
</tr>
<tr>
<td>228</td>
<td>Crop management</td>
<td>Mukong, J.M.</td>
<td>Production, Trade and Consumption of Legumes in Sub-Saharan Africa. Suggested strategies to ensure sustainable and more profitable production.</td>
</tr>
<tr>
<td>229</td>
<td>Crop management</td>
<td>Mukong, J.M.</td>
<td>The role of Rhizobium-Legume Symbiosis in agricultural soil in Arid Regions</td>
</tr>
<tr>
<td>230</td>
<td>Crop management</td>
<td>Narits, L.</td>
<td>The new protein crops in Estonian conditions</td>
</tr>
</tbody>
</table>
| 231 | Crop management | Nyandoro, R. | Efficacy of fungicidal seed dressings to manage fusarium root rot of
<table>
<thead>
<tr>
<th>Page</th>
<th>Section</th>
<th>Author</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>232</td>
<td>Crop management</td>
<td>Ogoke, I.J.</td>
<td>Underutilized Grain legumes of Nigeria</td>
</tr>
<tr>
<td>233</td>
<td>Crop management</td>
<td>Olson, M.A.</td>
<td>Progress on the development of mung bean [Vigna radiata (L.) R. Wilczek] cultivars for commercial production in Alberta</td>
</tr>
<tr>
<td>234</td>
<td>Crop management</td>
<td>Ortega, P.F.</td>
<td>Yield response to plant populations in three chickpea cultivars under subsurface drip irrigation system.</td>
</tr>
<tr>
<td>235</td>
<td>Crop management</td>
<td>Pajic, V.</td>
<td>ASSESSING THE EFFECTS OF GROUP 14 HERBICIDES ON LENTIL USING IMAGING TECHNOLOGY</td>
</tr>
<tr>
<td>236</td>
<td>Crop management</td>
<td>Patil, S.B.</td>
<td>MACHINE HARVEST: An economical method of chickpea harvesting</td>
</tr>
<tr>
<td>237</td>
<td>Crop management</td>
<td>Rahman, M.M.</td>
<td>Lentils in conservation agriculture: Relay cropping in Bangladesh</td>
</tr>
<tr>
<td>238</td>
<td>Crop management</td>
<td>Shirtliffe, S.J.</td>
<td>Integrated Weed Management in Lentil for Control of Herbicide Resistant Weeds</td>
</tr>
<tr>
<td>239</td>
<td>Crop management</td>
<td>Solórzano Vega, E.</td>
<td>BROAD BEAN VARIABILITY (Vicia faba L.) IN THE HIGH VALLEY OF MEXICO: COLLECTION AND DOCUMENTATION.</td>
</tr>
<tr>
<td>240</td>
<td>Crop management</td>
<td>Solórzano Vega, E.</td>
<td>“CARMEN’ NEW VARIETY OF FIELD BEAN (Vicia faba minor) FOR THE HIGH VALLEY OF MEXICO</td>
</tr>
<tr>
<td>241</td>
<td>Crop management</td>
<td>Subedi, M.</td>
<td>Effect of pre-harvest desiccants on seed germination and vigour of red lentil cultivar CDC Maxim</td>
</tr>
<tr>
<td>242</td>
<td>Crop management</td>
<td>Tay, J.</td>
<td>Effects of Sowing Date of Yield and Yield Components of Green Chickpea</td>
</tr>
<tr>
<td>243</td>
<td>Crop management</td>
<td>Tazawa, J</td>
<td>Study of Soybean Cultivars and Sowing Time for Organic Soybean Cultivation in Japan.</td>
</tr>
<tr>
<td>244</td>
<td>Crop management</td>
<td>Valenzuela-Herrera, V.</td>
<td>JUMBO 2010, new large seeded chickpea cultivar for the state of Sinaloa, Mexico.</td>
</tr>
<tr>
<td>245</td>
<td>Crop management</td>
<td>Vance, W.</td>
<td>Alleviating abiotic constraints to rainfed winter chickpea production- An example for small holder farms in the High Barind Tract of Bangladesh</td>
</tr>
<tr>
<td>246</td>
<td>Genomics and Genetics</td>
<td>Caron C.</td>
<td>A bioinformatic pipeline for automation of genotype by sequencing analysis of large, complex genomes</td>
</tr>
<tr>
<td>247</td>
<td>Genomics and Genetics</td>
<td>Diaz-Castro E</td>
<td>Application of Novel SNP Markers to Re-examine Common Bacterial Blight Resistance in OAC Rex</td>
</tr>
<tr>
<td>248</td>
<td>Seeds and Nutrition</td>
<td>Jha, A.B.</td>
<td>Folate profiles in diverse cultivars of common bean, lentil, chickpea and pea by LC-MS/MS</td>
</tr>
<tr>
<td>249</td>
<td>Genomics and Genetics</td>
<td>JOHNSON, PYARE LAL</td>
<td>Variability and Stability analysis for seed yield and its components in chickpea (Cicer arietinum L.)</td>
</tr>
<tr>
<td>250</td>
<td>Genomics and Genetics</td>
<td>Kaur, S.</td>
<td>Characterisation of genetic diversity in lentil germplasm (Lens culinaris L.) by SNP genotyping</td>
</tr>
<tr>
<td>251</td>
<td>Genomics and Genetics</td>
<td>Khamassi Khalil</td>
<td>The use of KASPAR-SNP Marker to analyze the genetic structure and diversity of A Tunisian field bean (Vicia faba L. var minor) germplasme collection in comparison to global genetic diversity and German frost and drought tolerant breeding lines.</td>
</tr>
<tr>
<td>252</td>
<td>Biotic Stress</td>
<td>Maguire K. L.</td>
<td>Combined approach to Foot Rot of peas</td>
</tr>
<tr>
<td>253</td>
<td>Crop management</td>
<td>Nagaraji S</td>
<td>Nutrient-efficient, resilient and sustainable legumes for prosperity in the drylands</td>
</tr>
<tr>
<td>254</td>
<td>Biotic Stress</td>
<td>Odeny DA</td>
<td>SCREENING GROUNDNUT RECOMBINANT INBRED LINES FOR RESPONSE TO EARLY LEAF SPOT: TOWARDS MARKER ASSISTED SELECTION IN ZAMBIA</td>
</tr>
<tr>
<td>255</td>
<td>Seeds and Nutrition</td>
<td>Reza M</td>
<td>Can Fe-chelating bacteria increase bioavailable Fe-content in lentil (Lens culinaris L.)?</td>
</tr>
<tr>
<td>256</td>
<td>Seeds and Nutrition</td>
<td>Singhal A.</td>
<td>Effect of Genotype and Environment on Compositional and Functional Attributes of Fababean Protein Isolates</td>
</tr>
<tr>
<td>257</td>
<td>Genomics and Genetics</td>
<td>Turner F</td>
<td>Exploring genomic contributions in a common bacterial blight resistant navy bean population</td>
</tr>
<tr>
<td>Page</td>
<td>Section</td>
<td>Author</td>
<td>Title</td>
</tr>
<tr>
<td>------</td>
<td>------------------</td>
<td>------------------</td>
<td>--</td>
</tr>
<tr>
<td>258</td>
<td>Crop management</td>
<td>Hamidou Falalou</td>
<td>Drought tolerant and dual purpose genotypes of groundnut for high productivity and effective crop-livestock system in Sahelian zones of West and central Africa</td>
</tr>
<tr>
<td>259</td>
<td>Crop Management</td>
<td>Abdulkadir Aydoğan</td>
<td>Comparison of Kabuli chickpea (Cicer arietinum L.) Cultivars with the Fern and Unifoliate leaf Traits for Parameter of Physical Quality</td>
</tr>
</tbody>
</table>