Phaseolus vulgaris

Common NameDry Bean
AbbreviationP. vulgaris

Dry Bean are high in starch, protein and dietary fiber, as well as being an excellent source of iron, potassium, selenium, molybdenum, thiamine, vitamin B6 and folate. Dry beans take longer to cook then most pulses, although cooking time can be shortened by soaking dried beans before cooking. Dry Bean is a highly variable species with growth habits ranging from bush varieties growing 20-60cm tall to vine varieties growing 2-3m long. While dry bean varieties range in growth habit all have characteristic green or purple alternate leaves and long pods containing 4-6 kidney-shaped seeds.

Property NameValue
Seed phenotypepinto, black, yellow, navy, red, pink, great northern, carioca, flor de junio, flor de mayo
Taxonomycellular organisms; Eukaryota; Viridiplantae; Streptophyta; Streptophytina; Embryophyta; Tracheophyta; Euphyllophyta; Spermatophyta; Magnoliophyta; Mesangiospermae; eudicotyledons; Gunneridae; Pentapetalae; rosids; fabids; Fabales; Fabaceae; Papilionoideae; Phaseoleae; Phaseolus
Genome Size587Mbp
Modal Chromosome Number2n = 11
Principal Investigator
  • Kirstin E. Bett Kirstin E. Bett: Breeding lentil and dry (common) bean varieties and conducting related research in collaboration with colleagues.
Plant breeding

Size, shape and colour appropriate for market class, early maturity and, of course, yield. Marker-assisted selection for CBB and anthracnose tolerance.


Genetic variability underlies all breeding efforts. Sometimes you have to go outside the primary genepool to find increased levels of variability. Tepary bean (Phaseolus acutifolius) is known to contain genes for traits of interest to common bean breeders such as disease resistance, increased micronutrients, and tolerance to abiotic stress (heat, cold, drought). Interspecies hybridization between tepary and common bean has led to the development of introgression lines which are being assessed for various traits. Lines with interesting phenotypes may be used as parents in the regular breeding program.


Post harvest darkening (PHD) is a phenomenon that occurs in seed coats during storage under less than ideal conditions (heat, humidity and light). PHD is controlled by at least two unlinked but epistatic genes: J and SD. All jj plants have non-darkening seeds; JJsdsd plants have slow-darkening seeds and JJSDSD plants have regular darkening seeds (Elsadr et al. 2011. Theor. Appl. Genet. DOI 10.1007/s00122-011-1683-8).

Germplasm Data
The following germplasm data is currently available:
Stock TypeCount
Single Cross1,864
Triple Cross1,082
Multiple Cross897
Double Cross105
Sequence & Variant Data
The following sequence and variant data are currently present:
Feature TypeCount
<p>Preparation of EST data: Sequences were extracted from dbEST and were subjected to quality control screening (vector, E. coli, polyA, T, or CT removal, minimum length = 100 bp, &lt; 3% N). Preparation of transcript (ET) database: All sequences from the appropriate divisions of GenBank (including RefSeq) were extracted. Non-coding sequences were discarded and cDNAs and coding sequences from genomic entries were saved. Sequences and related information (e.g. PubMed links) are stored in the qcGene database (qcGene). Assembly: Cleaned EST sequences and non-redundant transcript (ET) sequences were combined. Using the Paracel Transcript Assembler Program, sequences were assembled into contigs. TCs are consensus sequences based on two or more ESTs (and possibly an ET) that overlap for at least 40 bases with at least 94% sequence identity. These strict criteria help minimize the creation of chimeric contigs. These contigs are assigned a TC (Tentative Consensus) number. TCs may comprise ESTs derived from different tissues. The best hits for TC's were assigned by searching the TC set against a non-redundant amino acid database(nraa) using BLAT. The top five hits based on score were selected and displayed for each TC. Caveats: TCs are only as good as the ESTs underlying them; there may be unspliced or chimeric ESTs and thus TCs. There is still redundancy in the TC set because sequences must match end to end and at a certain percent identity to be combined. Directionality of the TCs should not be assumed. Not all TCs contain protein-coding regions.</p>
In many important crop species, the strategy of single seed descent (SSD) enables only 2 - 3 generations per year. Approximately eight generations of inbreeding are required before plants are mostly homozygous (‘true breeding’). This creates a ‘bottleneck’ in cultivar development. Hence, the purpose of this project is to develop a rapid generation cycling technique for CDC pulse crops in order to speed up the breeding process by using in vitro flowering technique.